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A multiple-scattering formalism is developed for the determination of four effective parameters for
bi-isotropic composites in the resonance range. Two models, the truncated quasicrystalline approxima-
tion and the dynamic Maxwell-Garnett model, are presented to calculate the effective parameters of gen-
eral discrete random composites. All the results recover the Maxwell-Garnett mixing formula at low
frequency. The degenerative two- and three-effective-parameter cases are also discussed in some detail
due to the practical importance of these composites and the requirement of the inherent unity of the for-

malism.
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I. INTRODUCTION

The concept of chirality (or lack of inversion symme-
try) has been the subject of study in many fields, such as
chemistry, optics, physics, mathematics, biology, and life
science [1]. This fundamental concept deals with the bro-
ken symmetry and addresses the handedness of an object
or a medium, which is one of the fundamental notions in
geometry [1]. Chirality, or handedness, is associated with
optical activity, which includes optical rotation disper-
sion and circular dichroism, has been known for almost
two centuries [2]. Recent measurements support that
electromagnetic activity also occurs in artificial chiral
composites at microwave frequencies [3]. Artificial chiral
composites can be constructed by suspending randomly
oriented short helices of the same handedness in a host
isotropic medium [4]. The possibility of artificial chiral
materials that are electromagnetically active in the
1-1000-GHz frequency range has led to predicting the
effective medium properties of chiral composites [S—7].

In this paper we consider a discrete random composite
medium formed by suspending n identical spheres per
unit volume in a host material with permittivity €, and
permeability u, The constitutive relations of each
scatterer are as follows:

D=e¢(E+aVXE), (1a)
B=u(H+BVXH) . (1b)

Different from Ref. [S], which described the composite
by an effective isotopic achiral medium, this paper ex-
tends the low-frequency analysis [6,7] to the multiple-
scattering formalism [5] in the resonance range with the
following homogeneous effective medium characterized
by [6,7]

D=¢,{E+a4VXE), (2a)
B=p (H+B.VXH) . (2b)
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In experimental work [3], a random suspension of
chiral particles in an achiral isotropic medium is known
to be of the above constitutive relations. The special case
of a=B=a.;=P.5=0 is also considered in some detail
since the composites of this kind are also of great impor-
tance [8-10].

For wave propagation in a medium that consists of
randomly distributed discrete scatterers, the classical as-
sumption is that of independent scattering, which is not
valid for a dense medium that contains particles occupy-
ing an appreciable fractional volume. This has been
verified both theoretically and experimentally [11-13].
The effective-field approximation (EFA) [13], the
effective-field approximation with coherent potential
(EFA-CP) [13], the quasicrystalline approximation (QCA)
[11,13,14], the quasicrystalline approximation with
coherent potential (QCA-CP) [13], and the effective-
medium approximation (EMA) [15] have been applied to
calculate the effective permittivities of discrete dense
media.

The purpose of this paper is to extend the multiple-
scattering formalism [11,13] to the calculation of the gen-
eral effective parameters given in Eq. (2). The extension
includes two respects. One is the self-consistent
multiple-scattering equations for the general discrete ran-
dom composites. This is given in Sec. II. The other is
the practically approximate calculation in the resonance
range. Section III deals with this problem by the truncat-
ed QCA and dynamic Maxwell-Garnett model. Section
IV concludes this paper with a discussion of relevant
problems.

II. MULTIPLE-SCATTERING FORMULATION

In this section, the self-consistent multiple-scattering
equations for coherent electromagnetic wave propagation
through randomly distributed scatterers are derived for
the general composites, which was described in the Intro-
duction. We shall consider first the two-parameter for-
mulation. Then we shall give the four-parameter formu-
lation.
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A. Two-parameter formulation
If the scatterer’s medium parameters are of the form
6:/:60: l‘ﬁéﬂo’ a=B=0 ’ (3)

the composite material will be of effective permittivity €.
and effective permeability u.4 To determine these two
quantities, two self-consistent equations are required. Let
u’, u; and uj denote the incident field, the field exciting
the ith scatterer, and the field scattered by the ith scatter-
er, respectively; then the self-consistency requires that [5]

E;=E’+ 3 E(E!), (4a)
J (#i)

H;=H’+ 3 Hj(H}). (4b)
j(&FD

The incident, exciting, and scattered fields are expand-
ed in terms of vector spherical wave functions as follows
[16]:

E'=R¢'(r;)-al , (5a)
H'=Ry(r;)-a}, , (5b)

=RY!(r;)a’ , (5¢)
H:=Ry'(r;)-a., , (5d)
Ei=¢(r;)-f. , (Se)
Ei=¢'(r,)-f , (50

where a, and a,, are known coefficients, while ai, a’;,,,
f!, and f!, are unknown coefficients; ¥(r;) and R¢(r;)
are the column vectors containing the vector spherical
wave functions and their regular parts, respectively; the
superscript ¢ denotes the matrix transposition. With
these notations, the addition theorems of wave functions
read [16]

W(l‘j):ﬁl/l'(rj)'gij, |r,-| < Irj—r,.I s (6a)
Y =9"S,, Inl>I;—rl, (6b)
RY'(r;)=RY'(r;)-S;; - (6¢)

Using the extended boundary condition method [16],
we can derive T matrices to relate the unknown
coefficients a and f as follows:

fi=Tial, fi =T a . @)

Substituting Egs. (5), (6a), and (7) into Eq. (4) we obtain
(17]

a,=a,+ 3 G, Ilal, (8a)
J (#i)
a,=a,+ 3 G-I al,. (8b)
j (55i)

A configurational average is performed over the ran-
dom positions of the scatterers and the QCA is used [11].
For identical scatterers, we obtain [5]

ai(r,.)=n0f drg(lr;—r,)G(r;, 1) Ti-ai(r;) , (9a)
al,(r;)=nq [dr;g(|r;—r;\G(r;,xr;)-Ti-al,(x;),  (9b)

where n, is the number density of scatterers, and
g(|rj—r;|) is the radial distribution function for the
spherical case [13].

For the spherical particles considered in this paper, T,
are diagonal with the explicit expressions given in Ref.
[2]. T, is obtainable via the replacements of € by u and
ubyein I,. When u=p, or e=¢;, Eqs. (9a) and (9b) be-
come a single equation due to the following Maxwell’s
equations in both background medium and the scatterers:

VXE=iopgH or VXH=—iweE . (10)

However, when e#¢, and u7pu, Egs. (9a) and (9b) do
represent two different equations since I,#T, . For a
conducting scatterer [8—10], T° is really different from
I™ [9], and we have two equations (9a) and (9b) to deter-
mine the effective permittivity and permeability [10].

Mathematically, the above derivation is trivial since
the formalism of Ref. [5] is suitable for both E and H.
However, it has the following features. First, the physi-
cal concept that the exciting electromagnetic fields of
each scatterer are expanded by two unknown vectors is
important and different from the classical formalism
[11,13]. Second, these equations cannot be easily solved
by the well-known approximation [5,13]

iK~(ri—rj) i
a

al(r;)=e r;) . (11)

J
Furthermore, one does not know how to determine €.
and .4 except of the effective wave number K [5]. Final-
ly, it provides us a limit that the four-parameter formula-
tion should satisfy. Moreover, the physical concept is
easier to be understood than that of the four-parameter
formulation in the next subsection.

B. Four-parameter formulation

The pioneering papers [6,18] inspired the present au-
thor to extend the low-frequency analysis of the four-
parameter composites [6,7] to the multiple-scattering for-
malism in the resonance range. On the basis of these pa-
pers [6,18], the extension is much simpler than five years
ago [5].

Following the work [2], the electromagnetic fields in
the medium characterized by Eq. (1) can be written as
(18]

E(r)=Q(r)—in,Qy(r) , (12a)
H(r)=—(i/7)Qy(r)+Q,(r), (12b)
m=n/{V1+kXa—B)?/4—k(a—B)/2},  (120)
m=0/{V1+kXa—B2/4+k(a—B)/2}, (12d)
n=Vu/e, k=wVpue, (12¢)

where the left-handed field Q, and the right-handed field
Q, satisfy the equations [12]

VXQ,r)=y,Q,r),
VXQy(r)=—y,Q,(r),

(13a)
(13b)
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v1={k/(1—k2aB)}{V1+kXa—B)l +k(a+B)/2} ,
(13¢)

k(a+B)/2} .
(13d)

v,={k/(1—k%aB)}{V1+k a—B)—

So it is more natural to develop the self-consistent
equations using the left-handed field Q; and the right-
handed field Q,. Again u’ u¢, and uf specify the incident
field, the field exciting the ith scatterer, and the field scat-
tered by the ith scatterer, respectively. As shown in Sec.
IT A, the self-consistency requires that both the left-
handed field and the right-handed field must be self-
consistent, namely (61,

= 2 (Q1y; Qi) » (14a)

(i)
Q5 =Q} 2 (Q31; TQy;) (14b)

(i)

with

Qi =Tu(Qj)) (140)
Qi =T1»(Qf;) (14d)
Q31 =T5(Q3;) (14e)
Q% =T»(Q5;), (14f)

where subscripts p and q in Q;;; (p,g=1,2) denote the
exciting and scattering fields, being Q, and Q,, respec-
tively, and T,, (p,g=1,2) are the corresponding linear
operators transforming the exciting field Q, to the
scattering field Q,. The two conditions (14a) and (14b)
can be guaranteed to hold provided [6]

g = + > T”(Qlj (15a)
J (i)
S TIZ(Q'fj) (15b)
Jj (Fi)
S, T21(Q§j) (15¢)
Jj(FD
Q%= gi+ 2 TZZ(Q;j) (15d)

Jj (&)

The physical meaning of Egs. (15a) and (15b) is that
when the exciting field of the ith scatterer is the left-
handed field only, the consistency requires that the left-
handed exciting field of the ith scatterer must be equal to
the superposition of other scatterer’s left-handed fields;
meanwhile, the superposition of the right-handed fields of
other scatterers must be equal to the right-handed excit-
ing field of the ith scatterer, which is zero according to
our assumption. Equations (15¢) and (15d) can be simi-
larly interpreted.

Notice that when a=/3, Eqs. (15a) and (15b) are not in-
dependent [18], then we have the three-parameter formu-
lation to determine (€g, Uegs Begr)-

By the representation theory of linear transformation
[19], we can write Egs. (15a)—-(15d) in matrix forms. This
can be shown as follows.
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The incident, exciting and scattered fields are expanded
in terms of the handed spherical vector wave functions
[18] [see also Eq. (5)]:

Qj,=RL(r;)-a} , (16a)
0. =RRXr,)-a} (16b)
Q¢ =RLUr,)a}, (16¢)
Q2[=7{R'(ri)-a§ , (16d)
Qj;=LHr;)-f}, (16e)
2,-=R(r,-)~f2 . (16f)

Using the T matrices, we can relate the unknowns a and
f such that [18]

flizlll'a'i+£12'a£ » (17a)
f2i=£21'a‘i+£22'a£ . (17b)

The translation addition theorems for handed spherical
wave functions [20] are

L(r))=RLAt,)Gyy, Ir;|<lr;—r;], (18a)
Lir)=LYr,)-Sy;, Il>Ir-rl, (18b)
RU(r)=RRr;) Gy, Ir;| <Irj—ril, (18¢)
R(r;)=R(r;)-S,;, r;| > Irj-—ril . (18d)

Substituting Egs. (16)-(18) into Egs. (16a)-(16d), we

obtain
=a1+6 3 Gy Tii-of, (192)
(i)
0= 3 anlfiz'a’ » (19b)
jGED
0= 3 Gyj-Thof, (19¢)
jGED
=ayt 3 Gy Thei. (194)
j D
From.Eqs. (A6b) and (A7a) of Ref. [21], we see that
Iy, | for the a=p case in the notation of Ref. [21].

Substltutmg the explicit forms of G 1/ and G/ into Egs.
(19b) and (19c¢), we find that for the case of a=p, these
two equations do become a single one.

Similar to the two-parameter case, the configurational
average and QCA result in the following equations for
identical scatterers:

i(r)=n, [ drg(lr;— ;)G Thy -ai(r;),  (202)
0= [dr;g(|r;—1,)G ;- Ti,-a(r)) (20b)
0= [drg(lr;—1,)Gyy- T4 -a(r)) (20c)
ai(r))=n, [ drg(Ir;—1,)G,;- Th-ai(r;) . (20d)

It is very difficult to solve Eqgs. (20a)—(20d) by means of
the well-known approximation

iKl-(ri—rj) i

aj(r;)=e ai(r;), (21a)

(21b)

. iK,(r,—r;)
aj(r;)=e " Vayr;),
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where K| and K, are the effective left- and right-handed
wave numbers. It is possible to introduce the four
effective parameters by Egs. (21) and (12a) and (12b).
Also, it is not difficult to derive the multiple-scattering
equations in terms of E and H instead of Q; and Q.
However, these formalism cannot recover the two-
parameter limit discussed in Sec. I A. Therefore the ap-
proximation given by Eq. (21) are not so useful as that of
the single-parameter case [11-13]. In Sec. III we make a
try to solve Egs. (20a)—(20d).

III. DISPERSION EQUATIONS FOR THE GENERAL
DISCRETE RANDOM COMPOSITES

In this section, we shall give two physical models to
derive the dispersion equations for the general compos-
ites. One is called the truncated QCA. Another is the
dynamic Maxwell-Garnett model. These two models are
discussed in Secs. III A and III B, respectively.

A. Truncated QCA

The truncated QCA presented in this section means
that for the exciting field of a given scatterer, we use
QCA in the range where the scatterers have a short-range
order with their positions given by the pair distribution
function, and replace the discrete random composites by
an effective homogeneous medium in the range where the
scatterers are disordered [22).

Since the discrete random composites is macroscopi-
cally homogeneous, for every scatterer the whole effect of
the other scatterers in the discrete random composite
have no difference if no scatterer has been fixed. In the
other words, the exciting fields of every scatterer have the
same expression in the scatterer coordinate, namely,

u’(r;)=RyY'(r;)-a,
ué(r;)=R¢'(r;)-a .

(22a)
(22b)

When the ith scatterer is fixed, the positions of the oth-
er scatterers are given by the pair distribution function,
and the exciting fields may vary. But by the QCA, we
can assume

(u(r;));=(ur;));=ur;)=Re(r)-a . (23)

Notice that [13] if |r; —r1;| > 10a, where a is the radius
of the scatterer, the pair distribution function
g(|r S Y, [Y=1. This means that for the exciting fields of
the ith scatterer u®(r;), all the scatterers outside the
sphere |r;—r;|=10a are uncorrelated with the ith
scatterer. Therefore, for the consideration of u®(r;), the
composite can be subdivided into two regions, as shown
in Fig. 1. Region I contains the scatterers whose posi-
tions are given by the pair distribution function [13],
whereas all the interactions of the scatterers in region II
are replaced by the effective medium [22,23]. This is the
model that we use to calculate the medium’s effective pa-
rameters.

The truncated QCA model can be further interpreted
as follows.

(i) The outer radius 10a is unchanged in our model
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Region |

Region 11

FIG. 1. The effective model for the exciting field of the ith
scatterer.

whether the scatterers in region I is in order or disorder.
It therefore includes the case when all the scatterers in re-
gion I are also uncorrelated. For this case, this model re-
covers the low-frequency limit. This can be proved by
comparing the present model with the Maxwell-Garnett
model [24] and remembering the discussion on these two
complementary models by Born and Wolf in their well-
known treatise [23]. Notice that there are two steps in
the proof: one is the effectiveness of the composite at low
frequency and in the Maxwell-Garnett model [24]; anoth-
er is the effectiveness of the Maxwell-Garnett model and
its complementary configuration [23,24].

(ii) Since the multiple-scattering formulation is
developed by the self-consistency of the ith scatterer, this
model is for this purpose only.

(iii) It is well known that the effective parameters of the
discrete random composites depend on the microstruc-
ture of the composite. The truncated QCA uses the
short-range order of the medium to obtain the medium’s
effective parameters. By this model, the medium’s
effective parameters are naturally introduced.

Equation (9a) is taken as an illustrative example for the
derivation of dispersion equations.

From Egs. (5) and (9), setting r; =0, we obtain

a=n0f210adrg(r)g(r)-___7_"e'a

+1,-

10
atng [ adrg(r)§(r)-l’e-a]. 24)
2a = =
Thus for a nontrivial solution to a, we obtain the
dispersion equation

det \;——é—nofzwadrg(r)[g(r)+é-§(r)].£e =0,

(25)

where the addition theorem (6a) has been used, the
effective medium’s exciting field is obtained by the addi-
tion theorem (6b), the scattering fields of the effective
medium exciting on the ith scatterer is obtained by the
reflective matrix £, [16,25], and [ is the unit matrix [5].

Similarly, we obtain another dispersion equation for
the two-parameter case:
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det 1;—=t,,,—nofzmdrg(r)[g(r)+£”l -$(r1-L, |=0.

(26)

Let ¢, 12, t51, and £,; indicate the reflective matrices
[16,25] in the four-parameter case. The addition
theorems (18a) and (18c) and (18b) and (18d) are invoked.
Finally, we obtain the dispersion equations for the four-
parameter case as follows:
det|L—£,1=no [ “drg(nG (M —L-Si(r]- L | =0,

(27a)
det f2‘°"drg(r>[g1(r>—£,2-§,(r)]-__T_12 |=o , (@7
det | [ “drg(rGa(r) Lo -Sa(r))-L ‘=o . Q10

det I—Qz—noleoadrg(r)[gz(r)—522~§2(r)]'122 ‘=o .

(27d)

From Eqgs. (44b) and (45a) of Ref. [21], it is evident that
for the a=p case, Egs. (27b) and (27c) merge into a single
equation. This is as expected. As pointed out by
Schwartz [8], the pair distribution function cannot in-
clude exactly the interactions of dipoles at low frequency
since it is the function of r only. Therefore, in the low-
frequency limit, all the formulas derived by OCA with
the pair distribution function become the Maxwell-
Garnett [24] mixing formula for the disorder case. The
same conclusion is suitable for the present formulation.

Notice that instead of Eq. (22), we can also use the ap-
proximation (11) or (21a) and (21b) to derive the disper-
sion equations under the present model. So we have two
methods to derive the dispersion equations. Which
method is better depends on the future experiments.

B. Dynamic Maxwell-Garnett model

Recently, the Maxwell-Garnett model [24] has been
used to calculate the effective dielectric constant at low
frequency via the Monte Carlo simulation [24,26]. In this
subsection, we generalize the well-known Maxwell-
Garnett model to the resonance range. We call this mod-
el as dynamic Maxwell-Garnett model [9].

If the cluster of spheres is viewed as a scatterer with
effective parameter [24], then the incident and scattering
fields can be written as

u=Ry,(ry)a,

w=y,(r)I"a,

(28a)
(28b)

where ;"’ﬁ is the T matrix of the effective scatterer.
Meanwhile, the scattering field can also be expressed as
[16,24]

w=9,(ro)ma, 29

where 7.y, is the average aggregate T matrix for N
scatterers. The calculation is repeated by the recursive
T-matrix algorithms [16,24] for each realization and the

Z(n) is averaged over N, realizations; each realization is
generated by the Monte Carlo simulation [24,26].
The self-consistency requires that

!cg'ang)'a . (30)

The nontrivial solution to a leads to the dispersion
equation

det|T*—1,,|=0. (31)

This result recovers the low-frequency limit [24]. When
the scatterers become sparse and disordered, the above
tedious calculation can be avoided. Instead, after the
EFA is used for the scatterers in a spherical region [27],
the closed form of the average aggregate T matrix for all
the scatterers inside the sphere can be derived [27].

The above procedure can be easily generalized to the
two- and four-parameter cases. The results are

det| LT —z,(w| =0, (32a)

det| Z" =, (m| =0 (32b)
for the two-parameter case and

detlgg‘lpquvﬂ:()» p,q=1,2 (33)

for the four-parameter case.

IV. CONCLUSION

In this paper, the problem of how to calculate the four
effective parameters for the bi-isotropic composites in the
resonance range has been presented. The multiple-
scattering self-consistent equations are obtained. Two
approaches of deriving the dispersion equations are sug-
gested. All the results recover the Maxwell-Garnett mix-
ing formula at low frequency. The degenerative two- and
three-parameter cases are also discussed due to both their
practical importance and the requirement of the inherent
unity of our theory. The methods of this paper can be ex-
tended to the following case:

(i) The background medium is also bi-isotropic.

(i) The scatterers are randomly distributed and orient-
ed [28].

(iii) The bianisotropic spheres are randomly distributed
in a host bi-isotropic medium since the T matrix [28] of a
bianisotropic sphere can be derived via the wave-function
theory of anisotropic media [29].

This paper’s formalism probably would be useful in the
theoretical description of the discrete random composites
with both electric and magnetic fluctuations, such as
granular metals and unmagnetized ferrites, as well as the
discrete random composites with cross coupling electric
and magnetic fluctuations, such as chiral particulate
composites.
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